• Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Bodmer, B. & Beste, C. On the dependence of response inhibition processes on sensory modality. Hum. Brain Mapp. 38, 1941–1951 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bodmer, B., Friedrich, J., Roessner, V. & Beste, C. Differences in response inhibition processes between adolescents and adults are modulated by sensory processes. Dev. Cogn. Neurosci. 31, 35–45 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, T., Xiao, T., Shi, J. & Zhao, L. Sensory gating, inhibition control and child intelligence: an event-related potentials study. Neuroscience 189, 250–257 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Friehs, M. A., Frings, C. & Hartwigsen, G. Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neurosci. Biobehav. Rev. 128, 749–765 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. The Theory of Event Coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frings, C. et al. Binding and retrieval in action control (BRAC). Trends Cogn. Sci. 24, 375–387 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 9, 129–154 (1997).

    Article 

    Google Scholar 

  • Hommel, B. Event files: feature binding in and across perception and action. Trends Cogn. Sci. (Regul. Ed.) 8, 494–500 (2004).

    Article 

    Google Scholar 

  • Hommel, B. Action control according to TEC (theory of event coding). Psychol. Res. 73, 512–526 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prochnow, A. et al. Neural dynamics of stimulus-response representations during inhibitory control. J. Neurophysiol. 126, 680–692 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Chmielewski, W. X. & Beste, C. Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes. Neuroimage 196, 227–236 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Colzato, L. S., Raffone, A. & Hommel, B. What do we learn from binding features? Evidence for multilevel feature integration. J. Exp. Psychol. Hum. Percept. Perform. 32, 705–716 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Colzato, L. S., Warrens, M. J. & Hommel, B. Priming and binding in and across perception and action: a correlational analysis of the internal structure of event files. Q J. Exp. Psychol. (Hove) 59, 1785–1804 (2006).

    Article 

    Google Scholar 

  • Takacs, A., Mückschel, M., Roessner, V. & Beste, C. Decoding stimulus-response representations and their stability using EEG-based multivariate pattern analysis. Cereb. Cortex Commun. tgaa016, https://doi.org/10.1093/texcom/tgaa016 (2020).

  • Hamilton, T. J. et al. Dopamine modulates synaptic plasticity in dendrites of rat and human dentate granule cells. Proc. Natl Acad. Sci. USA 107, 18185–18190 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42, 283–295 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cools, R. Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist 14, 381–395 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cools, R. & D’Esposito, M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113–125 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Durstewitz, D. & Seamans, J. K. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol. Psychiatry 64, 739–749 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arnsten, A. F. T. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol. Psychiatry 69, e89–99 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Faraone, S. V. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav Rev. 87, 255–270 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xing, B., Li, Y.-C. & Gao, W.-J. Norepinephrine versus Dopamine and their Interaction in Modulating Synaptic Function in the Prefrontal Cortex. Brain Res. 1641, 217–233 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ramos, B. P. & Arnsten, A. F. T. Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacol. Therapeutics 113, 523–536 (2007).

    CAS 
    Article 

    Google Scholar 

  • Knable, M. B. & Weinberger, D. R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iversen, L., Iversen, S., Dunnett, S. & Bjorklund, A. Dopamine Handbook. (Oxford University Press, 2009).

  • Solanto, M. V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behavioural Brain Res. 94, 127–152 (1998).

    CAS 
    Article 

    Google Scholar 

  • Devos, D. et al. Methylphenidate. CNS Drugs 27, 1–14 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hommel, B. & Wiers, R. W. Towards a Unitary Approach to Human Action Control. Trends Cogn. Sci. 21, 940–949 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Hommel, B. & Colzato, L. S. The social transmission of metacontrol policies: Mechanisms underlying the interpersonal transfer of persistence and flexibility. Neurosci. Biobehav Rev. 81, 43–58 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Ullrich, S., Colzato, L. S., Wolff, N. & Beste, C. Short-term Focused Attention Meditation Restricts the Retrieval of Stimulus-Response Bindings to Relevant Information. Mindfulness 12, 1272–1281 (2021).

    Article 

    Google Scholar 

  • Huster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M. & Herrmann, C. S. Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int J. Psychophysiol. 87, 217–233 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Nieuwenhuis, S., Yeung, N. & Cohen, J. D. Stimulus modality, perceptual overlap, and the go/no-go N2. Psychophysiology 41, 157–160 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Carlson, T. A., Grootswagers, T. & Robinson, A. K. An introduction to time-resolved decoding analysis for M/EEG. arXiv:1905.04820 [q-bio] (2019).

  • Fahrenfort, J. J., van Driel, J., van Gaal, S. & Olivers, C. N. L. From ERPs to MVPA Using the Amsterdam Decoding and Modeling Toolbox (ADAM). Front. Neurosci. 12, 368 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grootswagers, T., Wardle, S. G. & Carlson, T. A. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. J. Cogn. Neurosci. 29, 677–697 (2016).

    PubMed 
    Article 

    Google Scholar 

  • King, J.-R. & Dehaene, S. Characterizing the dynamics of mental representations: the temporal generalization method. Trends Cogn. Sci. 18, 203–210 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Treder, M. S. MVPA-Light: A Classification and Regression Toolbox for Multi-Dimensional Data. Front. Neurosci. 14, 289 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • King, J.-R. & Dehaene, S. Characterizing the dynamics of mental representations: the temporal generalization method. Trends Cogn. Sci. (Regul. Ed.) 18, 203–210 (2014).

    Article 

    Google Scholar 

  • Kleimaker, M. et al. Increased perception-action binding in Tourette syndrome. Brain 143, 1934–1945 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Opitz, A., Beste, C. & Stock, A.-K. Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding. Neuroimage 209, 116524 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Takacs, A. et al. Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Hum. Brain Mapp. 41, 2862–2877 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ouyang, G., Herzmann, G., Zhou, C. & Sommer, W. Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology 48, 1631–1647 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Ouyang, G., Sommer, W. & Zhou, C. A toolbox for residue iteration decomposition (RIDE)–A method for the decomposition, reconstruction, and single trial analysis of event related potentials. J. Neurosci. Methods 250, 7–21 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Ouyang, G., Sommer, W. & Zhou, C. Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (RIDE). Psychophysiology 52, 839–856 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Hommel, B. Event files: evidence for automatic integration of stimulus-response episodes. Vis. Cognition 5, 183–216 (1998).

    Article 

    Google Scholar 

  • Ouyang, G., Schacht, A., Zhou, C. & Sommer, W. Overcoming limitations of the ERP method with Residue Iteration Decomposition (RIDE): a demonstration in go/no-go experiments. Psychophysiology 50, 253–265 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Pascual-Marqui, R. D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharm. 24, 5–12 (2002).

    Google Scholar 

  • Barber, A. D., Caffo, B. S., Pekar, J. J. & Mostofsky, S. H. Developmental changes in within- and between-network connectivity between late childhood and adulthood. Neuropsychologia 51, 156–167 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Fan, L.-Y., Gau, S. S.-F. & Chou, T.-L. Neural correlates of inhibitory control and visual processing in youths with attention deficit hyperactivity disorder: a counting Stroop functional MRI study. Psychol. Med. 44, 2661–2671 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Fokin, V. A. et al. Localization of human cortical areas activated on perception of ordered and chaotic images. Neurosci. Behav. Physi 38, 677–685 (2008).

    CAS 
    Article 

    Google Scholar 

  • Ocklenburg, S., Güntürkün, O. & Beste, C. Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage 55, 1771–1778 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Vahid, A., Mückschel, M., Stober, S., Stock, A.-K. & Beste, C. Conditional generative adversarial networks applied to EEG data can inform about the inter-relation of antagonistic behaviors on a neural level. Commun. Biol. 5, 148 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Geng, J. J. & Vossel, S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muhle-Karbe, P. S., Andres, M. & Brass, M. Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation. J. Neurosci. 34, 12481–12489 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. (Regul. Ed.) 18, 177–185 (2014).

    Article 

    Google Scholar 

  • Allen, C., Singh, K. D., Verbruggen, F. & Chambers, C. D. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: a combined MEG and TMS study. R. Soc. Open Sci. 5, 171369 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bensmann, W., Roessner, V., Stock, A.-K. & Beste, C. Catecholaminergic modulation of conflict control depends on the source of conflicts. Int J. Neuropsychopharmacol. 21, 901–909 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Mückschel, M., Roessner, V. & Beste, C. Task experience eliminates catecholaminergic effects on inhibitory control – A randomized, double-blind cross-over neurophysiological study. Eur. Neuropsychopharmacol. 35, 89–99 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Clark, K. L. & Noudoost, B. The role of prefrontal catecholamines in attention and working memory. Front. Neural Circuits 8, (2014).

  • Mostofsky, S. H. & Simmonds, D. J. Response inhibition and response selection: two sides of the same coin. J. Cogn. Neurosci. 20, 751–761 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Chao, L. L. & Martin, A. Cortical regions associated with perceiving, naming, and knowing about colors. J. Cogn. Neurosci. 11, 25–35 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goodale, M. A., Króliczak, G. & Westwood, D. A. Dual routes to action: contributions of the dorsal and ventral streams to adaptive behavior. Prog. Brain Res 149, 269–283 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pscherer, C. et al. Resting theta activity is associated with specific coding levels in event-related theta activity during conflict monitoring. Hum. Brain Mapp. 41, 5114–5127 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rolls, E. T. The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Rudebeck, P. H. & Rich, E. L. Orbitofrontal cortex. Curr. Biol. 28, R1083–R1088 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carter, C. S. & van Veen, V. Anterior cingulate cortex and conflict detection: An update of theory and data. Cogn. Affect. Behav. Neurosci. 7, 367–379 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Goldstein, R. Z. et al. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc. Natl Acad. Sci. USA 107, 16667–16672 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 53, 63–88 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Freunberger, R. et al. Functional similarities between the P1 component and alpha oscillations. Eur. J. Neurosci. 27, 2330–2340 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Falkenstein, M., Hoormann, J. & Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. (Amst.) 101, 267–291 (1999).

    CAS 
    Article 

    Google Scholar 

  • Klimesch, W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res. 1408, 52–71 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Colzato, L. S., Slagter, H. A., de Rover, M. & Hommel, B. Dopamine and the management of attentional resources: genetic markers of striatal D2 dopamine predict individual differences in the attentional blink. J. Cogn. Neurosci. 23, 3576–3585 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Colzato, L. S., Pratt, J. & Hommel, B. Dopaminergic control of attentional flexibility: inhibition of return is associated with the dopamine transporter gene (DAT1). Front Hum. Neurosci. 4, 53 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kroener, S., Chandler, L. J., Phillips, P. E. M. & Seamans, J. K. Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex. PLoS ONE 4, e6507 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Noudoost, B. & Moore, T. The role of neuromodulators in selective attention. Trends Cogn. Sci. 15, 585–591 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yousif, N. et al. Dopamine activation preserves visual motion perception despite noise interference of human V5/MT. J. Neurosci. 36, 9303–9312 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Achenbach, T. M. ASEBA Overview. ASEBA https://aseba.org/aseba-overview/ (2015).

  • Leiner, D. J. SoSci Survey. (2019).

  • Lehrl, S. Mehrfachwahl-Wortschatz-Intelligenztest / MWT-B. (Spitta, 2005).

  • WHO ASSIST Working Group. The Alcohol, Smoking and Substance Involvement Screening Test (ASSIST): development, reliability and feasibility. Addiction 97, 1183–1194 (2002).

    Article 

    Google Scholar 

  • Bensmann, W., Zink, N., Roessner, V., Stock, A.-K. & Beste, C. Catecholaminergic effects on inhibitory control depend on the interplay of prior task experience and working memory demands. J. Psychopharmacol. (Oxf.) 33, 678–687 (2019).

    CAS 
    Article 

    Google Scholar 

  • Mückschel, M., Eggert, E., Prochnow, A. & Beste, C. Learning experience reverses catecholaminergic effects on adaptive behavior. Int. J. Neuropsychopharmacol. 23, 12–19 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Challman, T. D. & Lipsky, J. J. Methylphenidate: its pharmacology and uses. Mayo Clin. Proc. 75, 711–721 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rösler, M., Fischer, R., Ammer, R., Ose, C. & Retz, W. A randomised, placebo-controlled, 24-week, study of low-dose extended-release methylphenidate in adults with attention-deficit/hyperactivity disorder. Eur. Arch. Psychiatry Clin. Neurosci. 259, 120–129 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Nunez, P. L. & Pilgreen, K. L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. 8, 397–413 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bluschke, A., Chmielewski, W. X., Mückschel, M., Roessner, V. & Beste, C. Neuronal intra-individual variability masks response selection differences between ADHD subtypes-a need to change perspectives. Front Hum. Neurosci. 11, 329 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Folstein, J. R. & Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152–170 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Twomey, D. M., Murphy, P. R., Kelly, S. P. & O’Connell, R. G. The classic P300 encodes a build-to-threshold decision variable. Eur. J. Neurosci. 42, 1636–1643 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Verleger, R., Metzner, M. F., Ouyang, G., Śmigasiewicz, K. & Zhou, C. Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). Neuroimage 100, 271–280 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Eggert, E., Takacs, A., Münchau, A. & Beste, C. On the role of memory representations in action control: neurophysiological decoding reveals the reactivation of integrated stimulus-response feature representations. J. Cogn. Neurosci. 1–13, https://doi.org/10.1162/jocn_a_01861 (2022).

  • Petruo, V., Takacs, A., Mückschel, M., Hommel, B. & Beste, C. Multi-level decoding of task sets in neurophysiological data during cognitive flexibility. iScience 24, 103502 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takacs, A., Bluschke, A., Kleimaker, M., Münchau, A. & Beste, C. Neurophysiological mechanisms underlying motor feature binding processes and representations. Hum. Brain Mapp. 42, 1313–1327 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dippel, G. & Beste, C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 6, 6587 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ocklenburg, S. et al. Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Sci. Adv. 4, eaar6830 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sekihara, K., Sahani, M. & Nagarajan, S. S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25, 1056–1067 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Marco-Pallarés, J., Grau, C. & Ruffini, G. Combined ICA-LORETA analysis of mismatch negativity. Neuroimage 25, 471–477 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356, 1293–1322 (2001).

    CAS 
    Article 

    Google Scholar 

  • Fuchs, M., Kastner, J., Wagner, M., Hawes, S. & Ebersole, J. S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702–712 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Masson, M. E. J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods 43, 679–690 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Wagenmakers, E.-J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Raftery, A. E. Bayesian model selection in social research. Sociological Methodol. 25, 111–163 (1995).

    Article 

    Google Scholar 



  • Source link

    By admin1